[HTML][HTML] Uncoupling of the LKB1-AMPKα Energy Sensor Pathway by Growth Factors and Oncogenic BRAFV600E

R Esteve-Puig, F Canals, N Colome, G Merlino… - PloS one, 2009 - journals.plos.org
R Esteve-Puig, F Canals, N Colome, G Merlino, JA Recio
PloS one, 2009journals.plos.org
Background Understanding the biochemical mechanisms contributing to melanoma
development and progression is critical for therapeutical intervention. LKB1 is a multi-task
Ser/Thr kinase that phosphorylates AMPK controlling cell growth and apoptosis under
metabolic stress conditions. Additionally, LKB1Ser428 becomes phosphorylated in a RAS-
Erk1/2-p90RSK pathway dependent manner. However, the connection between the RAS
pathway and LKB1 is mostly unknown. Methodology/Principal Findings Using the UV …
Background
Understanding the biochemical mechanisms contributing to melanoma development and progression is critical for therapeutical intervention. LKB1 is a multi-task Ser/Thr kinase that phosphorylates AMPK controlling cell growth and apoptosis under metabolic stress conditions. Additionally, LKB1Ser428 becomes phosphorylated in a RAS-Erk1/2-p90RSK pathway dependent manner. However, the connection between the RAS pathway and LKB1 is mostly unknown.
Methodology/Principal Findings
Using the UV induced HGF transgenic mouse melanoma model to investigate the interplay among HGF signaling, RAS pathway and PI3K pathway in melanoma, we identified LKB1 as a protein directly modified by HGF induced signaling. A variety of molecular techniques and tissue culture revealed that LKB1Ser428 (Ser431 in the mouse) is constitutively phosphorylated in BRAFV600E mutant melanoma cell lines and spontaneous mouse tumors with high RAS pathway activity. Interestingly, BRAFV600E mutant melanoma cells showed a very limited response to metabolic stress mediated by the LKB1-AMPK-mTOR pathway. Here we show for the first time that RAS pathway activation including BRAFV600E mutation promotes the uncoupling of AMPK from LKB1 by a mechanism that appears to be independent of LKB1Ser428 phosphorylation. Notably, the inhibition of the RAS pathway in BRAFV600E mutant melanoma cells recovered the complex formation and rescued the LKB1-AMPKα metabolic stress-induced response, increasing apoptosis in cooperation with the pro-apoptotic proteins Bad and Bim, and the down-regulation of Mcl-1.
Conclusions/Significance
These data demonstrate that growth factor treatment and in particular oncogenic BRAFV600E induces the uncoupling of LKB1-AMPKα complexes providing at the same time a possible mechanism in cell proliferation that engages cell growth and cell division in response to mitogenic stimuli and resistance to low energy conditions in tumor cells. Importantly, this mechanism reveals a new level for therapeutical intervention particularly relevant in tumors harboring a deregulated RAS-Erk1/2 pathway.
PLOS