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Fibrosis is an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis
occurs. With protracted damage, fibrosis can progress toward excessive scarring and organ failure, as in liver cir-
rhosis. To date, antifibrotic treatment of fibrosis represents an unconquered area for drug development, with enor-
mous potential but also high risks. Preclinical research has yielded numerous targets for antifibrotic agents, some of
which have entered early-phase clinical studies, but progress has been hampered due to the relative lack of sensitive
and specific biomarkers to measure fibrosis progression or reversal. Here we focus on antifibrotic approaches for
liver that address specific cell types and functional units that orchestrate fibrotic wound healing responses and have
asound preclinical database or antifibrotic activity in early clinical trials. We also touch upon relevant clinical study

endpoints, optimal study design, and developments in fibrosis imaging and biomarkers.

The clinical problem

Fibrosis is the excess accumulation of ECM, which results from
chronic, nonresolving inflammation. This inflammation triggers a
wound-healing process that mitigates inflammartory tissue destruc-
tion but also leads to scar tissue formation. In the liver, fibrosis
is mainly due to chronic viral hepatitis B or C, autoimmune and
biliary diseases, alcoholic steatohepatitis (ASH) and, increasingly,
nonalcoholic steatohepatitis (NASH) (1-5). While mild fibrosis
remains largely asymptomatic, its progression toward cirrhosis,
i.e, replacement of functional parenchyma by scar tissue accom-
panied by severe architectural and vascular distortion, is the major
cause of liver-related morbidity and mortality. Clinical sequelae of
cirrhosis are (a) liver synthetic (functional) failure, including failing
hemostatic, nitrogen handling, and detoxification systems; (b) por-
tal hypertension with consequent formation of ascites and bleeding
esophageal or gastric varices; (c) a high susceptibility to infection;
and (d) a high risk to develop hepatocellular carcinoma (HCC) (2).
Preventive measures, such as antiviral regimens for hepatitis B or C,
are already decreasing the burden of viral cirrhosis and HCC, but
other causes, such as NASH (which is linked to obesity and type 2
diabetes) are taking center stage. Moreover, numerous patients
present initially in the clinic with advanced fibrosis or cirrhosis,
which are largely irreversible. Therefore, antifibrotics that prevent
progression toward cirrhosis or induce regression of advanced
fibrosis and cirrhosis are urgently needed (6-9).

Liver fibrosis progression and reversal

Research has delineated key mechanisms and cells that determine
fibrosis progression (fibrogenesis) and regression (fibrolysis)
(1-19). Notably, liver fibrosis has much in common with fibrosis
of other organs, such as lungs and kidneys, leading to a cross-
fertilization of research across organ boundaries. The structural
components of the fibrotic ECM, the growth factors, cytokines,
chemokines, and proteases, as well as central signaling cascades
implicated in fibrogenesis and fibrolysis, are nearly identical in
these different tissues (18, 20-22). Importantly, fibrosis is no lon-
ger considered static, but the result of a continuous remodeling
process. Nonetheless, in contrast to kidneys and lungs, the liver has
an extraordinary capacity to regenerate, even in advanced fibrosis.
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Fibrosis is intimately linked to wound healing, serving to pre-
vent tissues from disassembly during inflammation, apoptosis,
necrosis, and release of lytic enzymes. Fibrosis usually reverses
within days to a few weeks following the resolution of tissue dam-
age, as demonstrated in less advanced rodent and human liver
fibrosis (2, 8, 9, 23-25). However, the longer the damage persists,
often at a low level, the more ECM is deposited. This chronic dam-
age results in increasingly acellular scar tissue and a steep decline
of potential reversibility, even after elimination of causative trig-
gers (26, 27). Inefficient fibrolysis is due to several factors: (a)
lack of cues for ordered cell repopulation and regeneration due
to an atypical ECM and the loss of appropriate cellular context,
(b) advanced vascular remodeling with architectural distortion,
(c) extensive crosslinking of ECM components such as fibrillar
collagen that make proteolytic removal difficult, and (d) the dis-
appearance of cellular elements that digest the scar tissue. Here
we discuss the cellular and molecular pathways that promote
fibrosis progression and highlight current clinical trials as well as
improved methods of monitoring fibrosis.

Cellular targets and multicellular fibrogenic units
Activated myofibroblasts, representing a spectrum of similar
ECM-producing cells that mainly derive from hepatic stellate
cells and portal fibroblasts, are the major producers of the fibrotic
ECM and the most downstream cellular effectors of liver fibrosis
(Figure 1). Very few hepatic myofibroblasts in fibrosis stem from
BM-derived fibrocytes (12). Moreover, complete epithelial-mesen-
chymal transition (EMT) of hepatocytes and bile duct epithelia
to myofibroblasts may be a rare event — while an “incomplete”
EMT of these cells with acquisition of a fibrogenic phenotype is
common (28). Myofibroblasts and their products are primary tar-
gets for antifibrotic therapies, which in principle would address all
types of fibrosis, including advanced fibrosis.

Importantly, additional cellular elements that are either
upstream of the myofibroblasts or tightly linked to fibrogenic
activation within cellular units may provide a basis for comple-
mentary and more disease-specific antifibrotic approaches. A
combination therapy approach may be more effective, given that
crosstalk between different cell types generally underlies fibro-
genic activation. Conceptually, three major multicellular func-
tional units can be defined according to their constituent cell
types: (a) perisinusoidal/vascular — pericytes, i.e., hepatic stellate
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Figure 1

Myofibroblasts and their fibrogenic activation. Cells and major factors upstream of quiescent portal fibroblasts and hepatic stellate cells that
induce transformation to fibrogenic myofibroblasts. This schematic highlights several major targets to treat liver fibrosis. Notably, the ECM itself
can serve as modulator of fibrogenesis and fibrolysis. Thus collagen fibrils become crosslinked by LOXL2, which contributes to the reduced
reversibility of advanced fibrosis, and collagen-binding ECM receptors (especially the integrins 11, a2p1, and a11p1) confer signals of stress
or stress relaxation that either maintain fibrogenic activation or induce fibrolytic activity of the myofibroblasts. Additional minor contributors to
fibrogenic activation are not shown here (see text for details). A2AR, adenosine 2A receptor; AT1R, angiotensin 1 receptor; CBR1, cannabinoid
receptor 1; ET-1, endothelin-1; ETAR, endothelin A receptor; FXR, farnesoid X receptor; Hh(R), hedgehog (receptor); Int, integrin; LPA1R, lyso-
phosphatidic acid receptor 1; NGFR, nerve growth factor receptor; PTX2, pentraxin 2; TRAILR, TNF-related apoptosis-inducing ligand receptor;
YB-1, Y-box binding protein.

cells, liver sinusoidal endothelial cells (LSECs), macrophages/ Fibrogenic effectors

Kupffer cells, and hepatocytes; (b) stromal inflammatory —  Activated myofibroblasts. Myofibroblasts that derive from both acti-
myofibroblasts, T cells, and macrophages; and (c) portal/peri- vated hepatic stellate cells and portal fibroblasts are the primary
portal — cholangiocytes/ductular cells, portal fibroblasts, and  producers of scar tissue (1, 2, 6-22, 29). Notably, myofibroblasts
various inflammatory cells (ref. 8 and Figure 2, A-C). Altered  are essential for organ integrity, and their elimination promotes
interactions within these functional units give rise to the major  tissue necrosis and inflammation (30). Moreover, myofibroblasts
multicellular fibrogenic pathways. can also contribute to fibrosis regression via release of ECM-
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Multicellular context of fibrogenesis and fibrolysis. Shown are the postulated major cellular functional units and secreted factors that should be
addressed in their complexity when designing effective antifibrotic strategies. (A) Vascular unit. (B) Biliary unit. (C) Inflammatory unit. (D) Cells
and factors that affect macrophage polarization. Macrophages (and monocytes as macrophage precursors) are major modulators of inflammation
and tissue remodeling. Cells and factors that induce either M1 or M2 polarization are also linked to the generation of fibrogenic Th17 cells and
neutrophil recruitment. See text for details. B and C highlight factors not shown in A and B, respectively. Baso, basophil; EO, eosinophil; Mast,
mast cell; PMN, polymorphonuclear neutrophil; TIMP, tissue inhibitor of metalloproteinases.

degrading proteases, when confronted with favorable (e.g., ECM-
derived and integrin receptor-mediated) stimuli, in a process
called stress relaxation. Stress relaxation is the basis for limiting
ECM deposition once the wound is closed: the activated myo-
fibroblasts contract on the accumulated loose collagen matrix,
which triggers release of ECM-degrading proteases, mainly MMPs
(31, 32). Consequently, treatment strategies should not eliminate
myofibroblasts, but rather dampen their fibrogenic activation,
confer signals of stress relaxation, and induce fibrolytic enzymes.
Accordingly, two rodent studies demonstrated that approximate-
ly 50% of activated hepatic stellate cells/myofibroblasts undergo
apoptosis during fibrosis reversal, whereas the rest revert to a qui-
escent phenotype (33, 34). Quiescence can be induced by inhibi-
tion of certain fibroblast integrins, cellular receptors that confer
mechanical cues in response to ECM attachment (20) with the
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potential of converting activated to fibrolytic (myo-)fibroblasts
(refs. 31,32, 35,36 and Figure 1). Specific integrin inhibitors have
been developed for cancer therapy, but need better validation for
treatment of fibrosis (37, 38). Myofibroblast stress relaxation and
resultant amelioration of both fibrogenesis and portal hyperten-
sion has been shown in rats by inhibition of Rho kinase, which is
downstream of integrin signaling (39).

Several agents that block fibrogenic activation and ECM produc-
tion by myofibroblasts work well in culture and in some rodent
models of liver fibrosis but carry a high risk of unwanted side
effects in patients due to a lack of specificity for myofibroblasts.
Three major strategies are currently in preclinical development to
specifically target the pathogenic function of activated myofibro-
blasts. First, therapies may address fibrosis-relevant pathways that
are upregulated in these myofibroblasts, such as procollagen type I
Number 5 1889
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Activated cholangiocytes as drivers of fibrosis progression. Activated cholangiocytes are related, if not identical, to biliary progenitor cells.
These cells proliferate in active biliary diseases and during massive hepatocyte growth arrest or apoptosis, as in severe NASH, ASH, or viral
hepatitis. Biliary progenitor cells are regularly found in more advanced fibrosis (especially Metavir stage F2 or higher). They replicate ductal
plate formation by induction of a portal fibrotic matrix via secretion of profibrogenic factors and recruitment and activation of myofibroblasts, and
also Kupffer cells and monocytes and other inflammatory cells like T and NKT cells. The recruited myofibroblasts (and the inflammatory cells)
secrete factors and ECM components that maintain these fibrogenic units and support their differentiation into more mature biliary structures

that are embedded in a collagen-rich ECM.

or other key structural components of the ECM, or block cellular
receptors for ECM components and growth factors/chemokines
that are upregulated upon fibrogenic activation. Current blockers
of collagen synthesis have unwanted off-target effects, but inhi-
bition of upstream fibrogenic signaling, e.g., PDGFRS, a strong
myofibroblast mitogen, with the tyrosine kinase inhibitor ima-
tinib or a more specific PDGFRp-blocking antibody retarded early
but not advanced liver fibrogenesis (40, 41).

A second approach to targeting activated myofibroblasts is to
employ refined siRNA delivery techniques, such as liposomal for-
mulations that intrinsically accumulate in liver due to their size,
shape, and surface charge, and that deliver cargo to myofibroblasts
as well as other liver cell types (42, 43). For example, biliary and
parenchymal liver fibrosis was significantly mitigated in mice
treated with liposomes loaded with procollagen a1(I) siRNA (44).
Finally, the use of ligands specific to receptors on activated myofi-
broblasts can target drugs or siRNA, thus increasing efficacy and
minimizing detrimental off-target effects. Examples supporting
this approach in vivo include delivery of IFN via a cyclic PDGFRf-
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binding peptide, of a PDGFRf-specific kinase inhibitor via man-
nose-6-phosphate (which addresses the IGF-II receptor), and of
Hsp47 (which is involved in collagen processing) via vitamin A-
coupled liposomes (45-48). Although these therapies would largely
need to be given parenterally, such application can be justified in
situations in which treatment is likely to be highly effective, e.g.,
for reversing advanced fibrosis. Moreover, modifications of deliv-
ery systems such as pegylation (49) can be used to increase half-
lives, permitting once-weekly or once-monthly dosing.

Damaged hepatocytes. Ongoing hepatocyte apoptosis or necrop-
tosis, as occurs predominantly in liver diseases characterized
by enhanced oxidative and endoplasmic reticulum stress, lyso-
somal activation, and mitochondrial damage (ASH, NASH), is a
strong trigger of fibrogenesis (16, 50). Phagocytosis of apoptotic
hepatocytes by myofibroblasts triggers their fibrogenic activation
via NADPH oxidase 2 (NOX2) (51) and the JAK/STAT and PI3K/
Akt pathways (52). Notably, inhibition of hepatocyte apoptosis by
a pan-caspase inhibitor or an antagonist of cathepsin B (a lyso-
somal trigger of apoptosis) ameliorated (biliary) fibrosis in mice
Number 5
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(53, 54). On the other hand, as mentioned below, engulfment of
apoptotic hepatocytes and biliary cells by macrophages can induce
their fibrolytic activation.

Biliary progenitors. The hallmark of biliary fibrosis is the prolifera-
tion of biliary progenitor cells (activated cholangiocytes) that tend
to form small clusters or usually nonfunctional bile ductular struc-
tures, termed ductular reaction. These cells replicate early devel-
opmental programs of ductal plate formation, which includes
secretion of several factors that attract and activate hepatic stel-
late cells/myofibroblasts to proliferate and deposit ECM. This
biliary progenitor response is amplified by the surrounding myo-
fibroblasts, but also by inflammatory cells that release molecules
that sustain ductular cell viability and proliferation (Figure 3).
With the exception of infant fibrosis (biliary atresia, Caroli’s dis-
ease, congenital hepatic fibrosis) and adult primary biliary cir-
rhosis (PBC), primary sclerosing cholangitis (PSC), and secondary
biliary fibrosis, all liver diseases of other etiologies, once advanced,
develop into a portal fibrosis with proliferation of biliary progeni-
tors, especially when excessive hepatocyte apoptosis forces the
stem cell niche to produce biliary progenitors. These biliary pro-
genitors are more resistant to enhanced oxidative stress and hepa-
tocyte death, such as induced by ASH, NASH, or severe post-trans-
plant hepatitis C (55-60). Drugs aimed at the biliary fibrogenic
progenitors are effective antifibrotic agents in rodent biliary and
advanced non-biliary fibrosis. Examples are antagonists to the bili-
ary progenitor-specific integrin avp6 (a receptor for fibronectin
and tenascin-C, and an activator of latent TGF-f1) (61-63) or inhi-
bition of the hedgehog pathway, which is primarily upregulated
in biliary fibrogenesis and in carcinogenesis (56-59, 64, 65). Nota-
bly, inhibition of hedgehog signaling suppressed biliary fibrosis
and even reversed hepatocellular cancer in phospholipid flippase
(Mdr2) knockout mice (65).

LSECs. Hepatic (neo-)vascularization with LSEC activation and
proliferation is tightly associated with perisinusoidal fibrosis (cap-
illarization of the sinusoids) (Figure 1 and Figure 2A). During peri-
sinusoidal fibrosis, activated LSECs contribute to ECM production
(including basement membrane components, fibronectin, and
interstitial collagen type I), produce cytokines (e.g., TGF-f1 and
PDGF-BB) that activate hepatic stellate cells, and secrete factors
(e.g., endothelin-1) that contribute to intrahepatic vasoconstric-
tion, which exacerbates portal hypertension in cirrhosis. Converse-
ly, myofibroblasts activate LSEC via secretion of angiogenic factors
such as VEGF and angiopoietin-1 (66). Antiangiogenic therapies
have mitigated experimental liver fibrosis, mostly in models with
a prominent sinusoidal component. However, antifibrotic effects
were evident with polykinase inhibitors such as sunitinib and
sorafenib that, apart from angiogenic VEGF or FGF receptors on
LSECs, also target numerous other cells and kinases involved in
proliferation, ECM turnover, and immune regulation (67, 68).
This lack of specificity may explain the finding that treatment with
anti-VEGF antibody and an antagonist to integrin awvf33, therapies
that inhibit LSEC proliferation (but also affect the proliferation
of endothelia of larger vessels) may worsen advanced biliary, peri-
sinusoidal, and interstitial kidney fibrosis (69-71). Moreover, spe-
cific inhibition of VEGF mitigates biliary fibrosis progression but
retards fibrosis reversal after jejunoileal anastomosis (72). There-
fore, as with many other therapies, the antifibrotic efficacy of anti-
angiogenic therapies is highly context dependent.

T cells. CD4* T cells with a Th2 polarization, which are prevalent
in allergies, asthma, or parasite infections, promote fibrogenesis in
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the liver, lungs, or kidneys (18, 73-75). Th2 cells produce IL-4 and
IL-13, which stimulate the differentiation of potentially fibrogenic
myeloid cells and (alternatively) activated (M2) macrophages (refs.
73,76, and Figure 2D). Thus rodents with Th2-dominant T cell
infiltration (e.g., in experimental schistosomiasis or in experimen-
tal models skewed toward Th2; ref. 77) display rapid fibrosis pro-
gression, whereas CD4* Th1 cells have an antifibrotic effect (78).
Accordingly, patients dually infected with HCV and Schistosoma
show a 6-fold faster liver fibrosis progression than matched HCV-
monoinfected patients (79).

Th17 cells are clear drivers of fibrosis in multiple tissues (80, 81).
Th17 cells are induced by a special inflammatory environment,
including the cytokines TGF-f1 and IL-6. Th17 cells secrete IL-17A,
which drives fibrogenesis directly in myofibroblasts and indirectly
via stimulation of TGF-B1 release from inflammatory cells (80, 82).

Regulatory T cells appear to either favor or inhibit fibrogenesis,
again in a context-dependent manner. Subsets produce various
amounts of the immunosuppressive cytokines IL-10 (potentially
antifibrotic) and TGF-f1 (profibrotic). In most settings of chronic
inflammation, TGF-P1 prevails.

NK and NKT cells are enriched in the liver and belong to the
innate (NK) immune system or the interface between the innate
and adaptive (NKT) immune system. In rodent models of liver
fibrosis, NK cells repress fibrosis in two ways: (a) by killing early-
activated or senescent hepatic stellate cells/myofibroblasts that
express NK cell ligands and (b) via production of (antifibrotic) IFN
(83). In rodent studies, the effect of invariant NKT (iNKT) cells on
liver fibrosis is controversial and modest. At best, iNKTs attenuate
early but not late toxin-induced fibrogenesis (84), whereas (vari-
able) NKTs worsened fibrosis in the methionine- and choline-defi-
cient diet NASH model (59). Similar to NK cells, beneficial activity
may be explained by killing of hepatic stellate cells/myofibroblasts
and IFN secretion, but subsets of iNKT cells can also produce pro-
fibrotic IL-13. Notably, iNKT cells protected against diet-induced
obesity, insulin resistance, and NASH (85), making them a poten-
tial therapeutic target for this common cause of liver fibrosis.

Monocytes. Monocytes, which play a key role in inflammation
and fibrosis, are also precursors of fibrocytes, macrophages, and
dendritic cells and share characteristics with myeloid suppressor
cells (86, 87). At the interface of innate and adaptive immunity,
monocytes help orchestrate adaptive immune responses, with
proinflammatory monocytes (Ly6C*Gr1* in mice; CD14*CD16*
in humans) promoting fibrogenesis (88, 89). Chemokines and
their receptors are important in monocyte recruitment and acti-
vation, representing attractive targets for fibrosis modulation (16,
90). CCL2 and its receptor CCR2 are central to monocyte recruit-
ment to the inflammatory lesion, and their inhibition ameliorates
fibrosis progression in rodent models but retards fibrosis reversal
(86). Conversely, the chemokine CXCL9 (and CXCL10) prevents
pathological angiogenesis and fibrogenesis via activation of their
receptor, CX3CR (91-93). Monocytes are also the precursors of cir-
culating fibrocytes, cells that differentiate into collagen-producing
fibroblasts and are related to BM mesenchymal stem cells (12). On
the other hand, monocytes are the source of fibrolytic CD133*
cells that home to liver to induce fibrosis reversal after BM trans-
plantation (12, 17). Chemokines and their receptors are important
in monocyte recruitment and activation, representing attractive
targets for fibrosis modulation.

Macrophages. These resident cells derive from circulating mono-
cytes as precursors (partly replenishing the liver specific Kupffer
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cells). M1 macrophages are induced by IFN or IL-12, while IL-4,
IL-13, and GM-CSF induce M2 macrophages. Macrophages appear
to be fibrogenic during fibrosis progression and fibrolytic during
its reversal, but a detailed functional analysis and assignment to
M1 or the various M2 subclasses has remained elusive (18, 23, 26).
While M1 macrophages are activated in immediate defense against
pathogens or detrimental cellular debris, M2 macrophages are gen-
erally thought to promote wound healing (i.e., fibrogenesis) and
immune suppression (e.g., facilitating cancer growth as tumor-
associated macrophages) (18,94, 95). M2 macrophages respond to
IL-4 and IL-13 via IL-4 receptor and IL-13 receptor a1 (with IL-13
receptor 0.2 serving as negative regulator) and are characterized
by unique signal transducers (e.g., Stat6), enzymes (e.g., arginase),
or scavenger receptors (e.g., CD206). However, several subtypes of
M2 macrophages exist, such as the putatively proinflammatory
M2a, and the anti-inflammatory M2b and M2c subtypes, which
have ill-defined roles in fibrosis (20, 74). A recent study demon-
strated that fibrolytic macrophages in liver fibrosis derive from
circulating Ly6Chi-expressing monocytes and develop locally into
Ly6Clo-expressing macrophages with some classical M2 markers
and a high expression of fibrolytic MMPs, and this development
depends on phagocytic activity (96). Notably, MMP release depends
on phagocytosis of apoptotic cells, which is also a driver of bili-
ary fibrosis reversal (23). Given that M1 polarization in liver and
adipose tissue enhances insulin resistance and promotes inflam-
mation in NASH, whereas M2 polarization is protective (97), the
targeting of macrophage polarization in liver inflammation and
fibrosis is an attractive therapeutic option.

Other relevant molecular targets

Several other molecular targets are of interest, and some have
already entered clinical studies. ECM cross-linking, mainly of
fibrillar collagen, is largely mediated by lysyl oxidase (LOXL2).
LOXL2 likely impedes ECM degradation during fibrosis reversal,
and antifibrotic activity has been seen in a small study of CCL4-
induced liver fibrosis (98). A humanized antibody that blocks
LOXL2 activity is currently assessed in the largest clinical study
for liver fibrosis (Tables 1 And 2).

TLRs are sensors of bacteria, viruses, and foreign antigens. TLRs
are expressed ubiquitously but are prominent on cells of the innate
immune system, creating a proinflammatory environment and
activating adaptive immunity to promote pathogen elimination.
As the major interface between the gut and systemic circulation,
liver cells are equipped with a variety of TLRs that are central to
both maintaining immune tolerance and initiating inflammation
and repair when confronted with (microbial) danger signals (99).
A direct link exists between liver fibrosis and bacterial LPS, and
activation of its receptor TLR4. LPS enters the portal hepatic cir-
culation in conditions of enhanced intestinal permeability, such
as in ASH, NASH, and other intestinal and liver diseases. LPS
upregulates chemokine secretion of monocytes and macrophages/
Kupffer cells and downregulates the inhibitory TGF-B1 pseudo-
receptor Bambi, which cumulatively sensitizes hepatic stellate
cells/myofibroblasts to fibrogenic activation (99, 100). Prevention
of excessive TLR4 activation or inhibition of TLR4 are therefore
attractive strategies to inhibit fibrogenesis. Currently only the par-
enteral TLR4 antagonist, eritoran tetrasodium, is being studied for
the treatment of sepsis (101). Other interesting but little explored
targets include TLR3, a double-stranded RNA sensor whose activa-
tion by polyl:C attenuates liver fibrosis via activation of NK cells
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(102), and TLRY, a receptor for double-stranded bacterial DNA
that enhances fibrogenic immune activation via release of CCL2
(103). In addition, inhibitors of broadly expressed chemokine
systems other than CCR2/CCL2, mainly CXCL4 and CCLS (and
their receptors CXCR4 and CCRS, respectively) on myofibroblasts,
T cells, and macrophages, have been shown to attenuate liver fibro-
sis (104-106). Furthermore, the recent explosion of data related to
microRNAs (miRs) has uncovered miRs that inhibit (miR-29b) or
promote fibrogenesis (miR-199, miR-200, and others) (107-109).
While these miRs appear to have some specificity for myofibro-
blasts, their efficient in vivo delivery poses a problem.

TGF-f and, to a lesser degree, its downstream mediator, con-
nective tissue growth factor (CTGF), are potent profibrogenic
cytokines for hepatic stellate cells/myofibroblasts (1,2, 6,9, 10, 18,
19). However, their general and untargeted inhibition poses risks,
especially for TGF-f-neutralizing agents, given that this cytokine
is central to cellular differentiation, immune regulation (dampen-
ing excessive T cell activation), and regulated wound healing, such
as in vascular plaque stabilization in atherosclerosis (110).

Preclinical proof of concept

Before entering clinical studies, best preclinical proof of antifi-
brotic activity needs to be obtained in complementary rodent
models that reflect different aspects of human liver fibrosis (6).
Moreover, drug testing in cultures of precision-cut human liver
slices obtained from operations permit a first translation toward
the human in vivo system (111).

Combination therapies

Combination therapies that address liver fibrosis in a multi-
pronged approach hold much promise for future treatment, ideal-
ly targeting interactions between cells, soluble mediators, the ECM
and its receptors, and/or relevant intracellular signaling. Combi-
nations of targeted antifibrotic agents have yet to be thoroughly
tested in preclinical studies. Significant expense and effort will be
required to rigorously validate combinations at different doses
and in several rodent fibrosis models. However, combinations of
specific drugs can be anticipated that interfere with fibrogenesis,
induce fibrolysis, or address different cell types.

Clinical development of combination therapies that could guar-
antee thorough efficacy and low toxicity is only feasible with the
advent of improved noninvasive biomarkers and technologies to
measure fibrosis, and especially fibrogenesis. Moreover, the neces-
sary personalized approach to the patient with liver fibrosis or cir-
rhosis will only be possible with such biomarkers, permitting the
adjustment of different medications and their dose according to a
readily measurable treatment effect.

Testing antifibrotics in clinical trials

Recent clinical trials with efficient causal therapy have demon-
strated reversibility of advanced liver fibrosis. Perhaps the best
example is a study of 348 patients with chronic hepatitis B who
were treated with the potent antiviral tenofovir (112). After five
years, regression of fibrosis was observed in 91% of patients with
significant fibrosis at study entry. Only 12 of 252 patients (5%)
showed fibrosis progression, while 71 of the 96 patients (74%) with
cirrhosis at baseline were no longer cirrhotic at year five. Moreover,
all but one of these individuals had at least a two-unit reduction
(out of a possible total of six units) in Ishak fibrosis score at year
five, a difference that strongly rules out biopsy sampling variability.
Number 5
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Table 5
Stem cell therapies for liver fibrosis and cirrhosis

review series

Cell type Intervention Patient Evidence of efficacy Phase No. NCT identifier

population patients (reference)
UC-MSC ol C Improved liver function, MELD, — 45 (Summarized in ref. 170)

and reduced ascites
UC-MSC ol C Improved liver function, MELD, — 43 (Summarized in ref. 170)
and increased survival
BM-MSC ol C Improved liver function and MELD — 158
BMNC ol C Improved ascites and MELD — 40
CD34+ ol C Improved MELD — 4
PBMC from G-CSF ol C Improved liver function, reduced — 40
Child-Pugh score

CD133+ BMSCs ol C Increased liver volume after liver resection — 6
BM-MSC r,ol C, alcohol Pending 2 12 01741090
BM-MSC r,ol C, HBV Pending 2 240 01728727
UC-MSC r,ol C, PBC Pending 1/2 100 01662973
UC-MSC r,sb C, reversal Pending 1/2 200 01233102
UC-MSC r, ol C, reversal Pending 1/2 45 01220492
HMB-MSC r, ol F/C, reversal Pending 1/2 50 01483248
BM-MNC plus CD133+ r, db G, reversal Pending 1/2 30 01120925
PBSC r,ol C, HBV Pending 1/2 20 01728688
ABMSC plus portal nr, ol C Pending 2/3 50 01560845

hypertension surgery

ABMSC, autologous BM stem cell; BM-MNC, BM mononuclear cell; BM-MSC, BM mesenchymal stem cell; BMNC, blood mononuclear cell; HMB-
MSC, human menstrual blood—derived mesenchymal stem cell; PBSC, autologous peripheral blood stem cell; UC-MSC, umbilical cord—derived

mesenchymal stem cell.

While some additional human studies also suggested antifibrotic
activities of tenofovir, others failed to show an effect. Tables 1
and 2 list past and current clinical studies with liver fibrosis as
primary endpoint, and Supplemental Table 1 (supplemental mate-
rial available online with this article; doi:10.1172/JCI66028DS1)
shows studies with liver fibrosis as a secondary endpoint. Table 3
highlights clinical studies for other fibrotic diseases that are rel-
evant for liver. Clinical studies targeting major multicellular fibro-
genic pathways are shown in Table 4. We also summarize trials
employing stem cells, an approach that is attractive in combina-
tion with pharmacological therapies (Table 5). Notably, develop-
ment efforts have largely focused on extracellular targets because
intracellular targets are less accessible and tend to lack specificity
for the fibrogenic cells.

Optimal selection and stratification of patients. Subjects should be
matched according to etiology, age, gender, signs of the meta-
bolic syndrome, medications, and risk factors such as alcohol or
tobacco consumption (7-9). Preferably, patients should be in an
intermediate fibrosis stage, where dynamic changes of fibrosis are
best detectable. Patients with chronic HCV infection following liver
transplant are considered a preferred study population because up
to 30% experience an accelerated fibrosis progression to cirrhosis
within three to five years (60). Patients should be further stratified
according to their genetic risk to progress to cirrhosis (7, 8, 60, 113).

Assessing fibrosis

Assessment of fibrosis progression is far more difficult for liver
than for lungs or kidneys because transaminases do not correlate
with fibrosis or fibrogenesis and liver function parameters such
as albumin or prothrombin time (protein synthesis) are usually
only altered in cirrhosis. Liver biopsy remains the standard for

The Journal of Clinical Investigation
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studies with antifibrotics. However, liver biopsy is invasive and
risky (2, 6, 8, 60, 114) and prone to considerable sampling error,
and its interpretation is subject to interobserver variability. Even
in well-stratified cohorts, given the usually slow fibrosis progres-
sion, conventional fibrosis staging (Metavir, Ishak) may require
approximately 200 patients studied over a period of two to three
years to detect a 20%-30% difference in fibrosis between treatment
groups. However, by including current surrogates of fibrosis pro-
gression, it appears feasible to conduct proof-of-concept trials in
approximately 100 patients within 12 months or less.

Refined liver biopsy readouts. Predictive value may be improved
using dynamic biopsy-derived parameters, such as semiquan-
tification of activated a-SMA-positive myofibroblasts and the
fibrogenic cytokine TGF-f after immunostaining (115), or quan-
titative PCR quantification of transcripts that are related to fibro-
genesis or fibrolysis (116).

Radiological imaging. Conventional and contrast ultrasonography,
computerized tomography, and MRI, PET, single-photon emission
computerized tomography, and diffusion-weighted MRI cannot
differentiate fibrosis stages. However, magnetic resonance texture
analysis, which requires sophisticated instrumentation and soft-
ware, may permit semiquantitative fibrosis assessment (4, 8).

Elastography. Ultrasound elastography (UE) and axial radiation
force imaging (ARFI) measure hepatic stiffness and elasticity.
These techniques sample a 100-fold-larger volume than biopsy
and can differentiate mild (Metavir FO-F1) from significant fibro-
sis (F2-F4) and cirrhosis (F4), with diagnostic accuracies (area
under receiver operating characteristics [AUROC] curves) around
and above 0.90, which is considered good (8, 114, 116). Magnetic
resonance elastography assesses the whole liver and may be supe-
rior to UE/ARFI, but is not generally available, and studies are
Number 5 1897
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review series

small (8, 117). UE is useful for initial stratification of patients
according to fibrosis stage.

Serum fibrosis markers. More than 2,000 studies in the last five
years have employed serological markers to assess liver fibrosis,
mostly in patients with HCV (2, 6, 8, 60, 118-121). These mark-
ers reflect liver function (indirect markers), are related to matrix
metabolism (direct markers), or both. The best marker panels
show AUROCs around 0.8-0.85 to differentiate between no/mild
fibrosis (Metavir FO-F1) and moderate/severe fibrosis (F2-F4).
Fibrosis markers have almost exclusively been validated as predic-
tors of fibrosis stage, while especially the direct parameters may
rather reflect the dynamics of fibrogenesis and/or fibrolysis (2, 8).
Recent studies suggest that certain marker combinations such as
the (indirect) Fibrotest (122) and the (direct) enhanced liver fibro-
sis (ELF) test can predict hard endpoints. Thus ELF was superi-
or to fibrosis stage, the Child-Pugh or the Model for End-Stage
Liver Disease (MELD) score, to predict hepatic decompensation
or death in long-term, retrospective follow-up studies of patients
with advanced chronic HCV or PBC (123-125).

Combination of methods. The combination of serum fibrosis mark-
ers with elastography increases diagnostic accuracy, permitting a
clear allocation to either no/mild (FO-F1) or significant (F2-F4)
fibrosis in 70% of patients (8, 114).

Measurement of portal hypertension and quantitative liver function.
The hepatic vein pressure gradient (HVPG) is an excellent predic-
tor of decompensation or death in patients with cirrhosis (126). A
non-invasive alternative, the hepatic vein arrival time of an injected
ultrasound contrast agent, needs further validation (127).

Tests that measure the metabolic capacity of the liver, such as
demethylation of ingested methacetin and quantification of the
exhaled metabolite 13CO,, correlate inversely with the severity of
liver inflammation and fibrosis, and the results of such tests can
complement antifibrotic drug trials (128).

Quantitative imaging of liver fibrosis and fibrogenesis. Methods that
employ a small molecular ligand for fibrillar collagen, elastin, ora
cell-associated molecule coupled to a radio-imaging or MRI agent
are in development (4, 8). Examples include an elastin-specific
MRI probe for imaging of fibrosis (129) and probes for quantify-
ing fibrogenic cells via the cholangiocyte integrin ovf36 or the myo-
fibroblast-specific PDGFR@ (4, 8). When improved, such method-

ology could serve as a novel gold standard for the assessment of
fibrosis/fibrogenesis and permit short-term testing of potential
antifibrotics before and after a single dose of the drug.

Novel biomarkers. Apart from ongoing efforts to find and validate
better serum markers of fibrosis, fibrogenesis, and fibrolysis (4, 8),
three methodologies will likely become relevant for antifibrotic drug
trials: (a) urinary assessment of proteolytic activities in the fibrotic
liver could be monitored after injection of mass-encoded protease-
sensitive peptides conjugated to nanoparticles and multiplexed
detection of cleavage products by mass spectrometry (2, 130); (b)
membrane microparticles, which are shed from activated or apop-
totic cells, can be quantified in the bloodstream via their cell-specific
surface molecules; microparticles represent a novel set of quantita-
tive diagnostic markers to monitor cell-specific activation in liver
inflammation and fibrosis (3, 131); and (c) circulating miRs that can
reflect liver-specific pathology, including hepatocyte differentiation
and activation, cancer growth, and liver fibrosis (109).

Conclusions

We have gained remarkable insight into the cellular and molec-
ular mechanisms of liver fibrosis and reversal, and even reversal
of cirrhosis appears feasible in preclinical models. Currently, the
field has progressed toward clinical translation. As antifibrotics
address mechanisms that are embedded in a complex multicellu-
lar network, their efficacy is predicted to be context dependent.
Combination therapies hold most promise, but their development
and use require a personalized medicine approach that depends on
the development and validation of novel noninvasive markers and
techniques to quantify liver fibrosis and especially fibrogenesis.
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